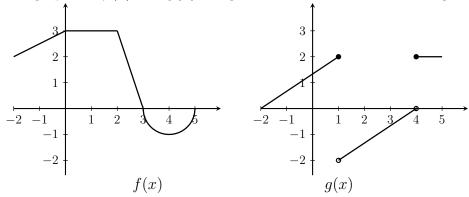
Objectives:

- Practice using properties of definite integrals.
- Compare values of definite integrals.
- Use antiderivatives to evaluate definite integrals.

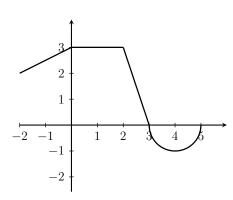
1.
$$\int_0^{2\pi} (x + \sin(x)) \, dx$$

2. The graphs of f(x) and g(x) are given below. Calculate the integrals.



- (a) $\int_{-2}^{1} f(x) + g(x) dx$
- (b) $\int_{2}^{5} 10f(x)dx =$
- (c) $\int_{-2}^{1} g(x) + 5dx$
- (d) $\int_{2}^{1} g(x) dx + \int_{4}^{2} g(x) dx$

Comparing Integrals: For the function f(x) in the previous problem, draw a function h(x) on the axis such that $h(x) \ge f(x)$ for all x values in the interval [0, 5]:



How does $\int_0^5 h(x)$ compare to $\int_0^5 f(x)$? In general we can say that if f(x) ______ h(x) for all x in the interval [a, b], then $\int_a^b f(x)$ ______ $\int_a^b h(x)$. In particular: (1) If $f(x) \ge 0$ for all x in [a, b]:

(2) If $m \leq f(x) \leq M$ for all x in [a, b] where m, M are constants:

Example: It would be very difficult to calculate $\int_{-2}^{3} \sin\left(\frac{1}{x}\right) dx$. However, we can compare the integral we want to know about to integrals that are easy to compute:

Evaluation Theorem (or, Fundamental Theorem of Calculus, Part II)			
If <i>f</i> is	on		
and F is any	, (i.e. $F'(x) = $), then		
We use the notation	to denote		

Note:

Examples

$$1. \int_{-1}^{2} x^4 dx$$

2.
$$\int_0^1 \frac{1}{1+x^2} dx$$

3.
$$\int_{2}^{10} \left(e^x + 5x - \frac{1}{x} \right) dx$$

Because of this relationship betwee	en the integral of $f(x)$ and the antiderivative of $f(x)$, we write
to mean	. We call this expression an

Note:

.

So now we have 3 ways of calculating an indefinite integral:

Interpreting the integral: The Evaluation Theorem also

The Evaluation Theorem also appears as the	·
Since $F'(x) = f(x)$ is the	, the Evaluation Theorem tell us that
the	is equal to,
which we call the	

Examples:

If $f(x)$ represents:	Then $\int_{a}^{b} f(x)dx = F(b) - F(a)$ represents:
Velocity	
Marginal Cost	
Growth Rate of a Population	

Note: